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Diet-based annual biomass indices can potentially use predator stomach contents to provide information about prey biomass and may be
particularly useful for species that are otherwise poorly sampled, including ecologically important forage fishes. However, diet-based biomass
indices may be sensitive to underlying ecological dynamics between predators and prey, such as predator functional responses and changes in
overlap in space and time. To evaluate these factors, we fit spatio-temporal models to stomach contents of five Atlantic herring (Clupea hare-
ngus) predators and survey catch data for predators and Atlantic herring. We identified drivers of variation in stomach contents, evaluated
spatial patterns in stomach content data, and produced predator-specific indices of seasonal Atlantic herring biomass. After controlling for
spatio-temporal processes and predator length, diet-based indices of biomass shared similar decadal trends but varied substantially between
predators and seasons on shorter time scales. Diet-based indices reflected prey biomass more than prey availability, but weak correlations in-
dicated that not all biological processes were controlled for. Results provide potential guidance for developing diet-based biomass indices and
contribute to a body of evidence demonstrating the utility of predator diet data to provide information about relative prey biomass.

Keywords: biomass index, diet data, food habits, herring, predator–prey dynamics, spatial overlap, spatio-temporal model, stomach

Introduction
Annual indices of biomass are important components of stock

assessments that are used to determine stock status, estimate pro-

ductivity, and inform fisheries management policy (Hilborn and

Walters, 1992). Ideally, indices are based on fishery-independent

survey data, but these data may not be available for all systems or

species due to costs or difficulty of sampling target species. In

such cases, indices can be derived by standardizing opportunistic

data sources, such as fishery catch per unit fishing effort data

(Maunder and Punt, 2004; Grüss et al., 2019). Another potential

data source for developing biomass indices is predator diet

data. In some marine regions, such as the Northwest Atlantic

(Smith and Link, 2010), Alaska (Livingston et al., 2017), and the

Barents Sea (Holt et al., 2019; Eriksen et al., 2020), there is
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extensive information about predator feeding habits. For data-

rich systems, a diet-based biomass index can corroborate or con-

tradict trends observed from traditional assessment methods,

while for data-limited fisheries, a diet-based biomass index may

be the only source of information available.

Previous analyses point to the potential use of predator stom-

ach contents to inform prey abundance. Early work employed

predator diets to identify rare species (Templeman, 1970), and to

sample predator size classes that were not easily collected using

traditional gears (Gotshall, 1969). More recently, predator stom-

ach contents have been used to estimate the local distribution of

prey species (Fahrig et al., 1993; Link, 2004; Eriksen et al., 2018),

provide information about prey recruitment (Scopel et al., 2018),

assess fluctuations in prey abundance resulting from changes in

ecosystem function (Hanson and Chouinard, 2002; Smith et al.,

2016), and identify changes in community composition as a re-

sult of fishing (Frid and Hall, 1999; Smith et al., 2013). Many of

these studies also found strong correlations between the amount

of prey in predator stomachs and independent measures of prey

abundance, such as from stock assessments or scientific surveys

(Deroba, 2018). In addition to strategic management guidance,

predator diet data have been used to provide abundance-index

information for tactical fisheries management. For example, the

overfishing limit and allowable biological catch for Bering Sea oc-

topus are set using estimates of consumption by Bering Sea

Pacific cod (Ormseth et al., 2018).

For an index of abundance to be useful, it should reflect

changes in the underlying abundance or biomass of the target

species by changing in constant proportion to the population of

interest (Thorson et al., 2015). When proportionality is not pre-

served over time, the index can provide misleading information

about changes in abundance (Maunder and Punt, 2004; Bishop,

2006). This proportion may change due to changes in the target

species’ availability (e.g. schooling, migration), how the data are

collected (e.g. gear type, vessel size), or both (Bishop, 2006;

Cordue, 2007). Traditional approaches to index standardization

use models to account for changes in target species availability,

including the effects of habitat and the distribution of sampling

in space and time (Campbell, 2004; Thorson and Ward, 2013;

Cao et al., 2017), as well as changes in sampling effort over time

(Maunder and Punt, 2004). Similarly, potential indices of prey

abundance may show correlation with true population abun-

dance, a hyper-stable relationship (i.e. the indices of prey abun-

dance remain elevated while true population abundance

decreases; Rose and Kulka, 1999), or no relationship (Figure 1).

An index standardization method for diet data should account

for processes that alter the proportionality assumption, including

spatio-temporal and biological aspects of predation.

If predators are opportunistic, which is the case for many ma-

rine piscivores (Bax, 1998), then their feeding habits might provide

information about prey abundance (e.g. Einoder, 2009; Eriksen

et al., 2018). Predator stomachs would be most informative if they

are non-selective and prey-dependent (i.e. eat prey in proportion

to their density; Abrams and Ginzburg, 2000). However, predator

feeding could be density-dependent (i.e. saturating functional rela-

tionship), or be ratio-dependent, where prey consumption depends

on both predator density and prey density (Abrams and Ginzburg,

2000; Abrams, 2015). Abundance of alternative prey resources

could also erroneously drive changes in predator diets, indepen-

dent of changes in target prey abundance (Murdoch, 1969; Fortin

et al., 2015; Smith and Smith, 2020). These well-known theoretical

properties of predator–prey systems could be one obstacle for us-

ing diet data to estimate indices of prey abundance.

Standardizing predator diet data presents unique challenges be-

cause predator diets are the result of complex interactions between

two or more species that occur over unknown spatial and temporal

scales (Taylor, 1984; Bax, 1998). When using predator stomach con-

tents to generate biomass indices, one needs to consider how prey

availability and predator dietary preferences change over space and

time. Prey availability is likely primarily driven by spatio-temporal

distributional overlap between predators and prey, including alterna-

tive prey resources (Sih, 2005; Koen-Alonso, 2006; Winemiller,

2007), which can vary among years and seasons. Similarly, because

predator ranges may not fully overlap with prey ranges within a

year, and because predator and prey distributions are dynamic, one

needs to account for the variation in spatial scopes across years

(Campbell, 2004). Predator dietary preferences are also likely to dif-

fer by predator species and size (Cohen et al., 1993; Mittelbach and

Persson, 1998), due to factors such as feeding specialization, gape

size, and energetic requirements (Juanes et al., 2008).

In this study, we explore how spatio-temporal processes and

predator characteristics affect an index of prey biomass developed

from predator stomach contents, using an extensive time series

available for the Atlantic herring (Clupea harengus) population of

the Northwest Atlantic. We sought to answer two main questions:

(i) to what extent do fine-scale spatio-temporal processes (e.g.

prey availability, predator distribution) govern annual biomass

indices that are based on predator stomach contents; and (ii) to

what extent do predator characteristics (e.g. species and length)

affect annual indices based on predator stomach contents.

Finally, given these potential sources of variation, we evaluated

whether predator diet data contained sufficient information to es-

timate useful standardized indices of prey abundance.

Methods
Atlantic herring are a schooling, pelagic species that undergoes

complex north-south and inshore-offshore migrations for feed-

ing, spawning, and overwintering (Sinclair and Iles, 1985; Reid

et al., 1999; Jech and Stroman, 2012). In the Gulf of Maine-

Georges Bank region of the Northwest Atlantic, Atlantic herring

predominantly spawn in fall before migrating southwest to over-

winter as far as south of Cape Cod. During the summer, they re-

turn to the Gulf of Maine to feed before aggregating on spawning

grounds. Although Atlantic herring exhibit spawning site fidelity,

they are assessed as a single stock complex by the National

Oceanic and Atmospheric Administration (NOAA) Northeast
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Figure 1. Potential relationships (shading) between a diet-based
index of prey biomass and true underlying prey abundance,
illustrating accurate reflection of relative abundance (left panel),
hyper-stable index of abundance due to Type II functional response
or predator tracking of prey (centre panel), or absence of
relationship between index and prey abundance (right panel).
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Fisheries Science Center (NEFSC). The Northwest Atlantic her-

ring complex has undergone major changes in abundance.

After the stock collapsed in 1977 due to overfishing by foreign

fleets, rebuilding began to occur in the mid-1980s, and biomass

exceeded pre-collapse levels by the mid-1990s (Overholtz and

Friedland, 2002). Atlantic herring are assessed using an age-

structured population model, incorporating catch data from two

gear types and abundance data from four surveys. Previous

assessments used age-varying natural mortality (Deroba, 2015)

but emergence of retrospective patterns (Mohn, 1999) motivated

use of a constant natural mortality rate in the most recent assess-

ment (NEFSC, 2018).

We analysed spatio-temporal patterns in seasonal predation on

Atlantic herring by Atlantic cod (Gadus morhua), goosefish

(Lophius americanus), spiny dogfish (Squalus acanthias), white

hake (Urophycis tenuis), and silver hake (Merluccius bilinearis).

These predators were chosen because they contained the largest

amounts of herring (in total mass, g) of all sampled predators

when summed across years (87.9% of sampled Atlantic herring

mass). These demersal species are opportunistic, generalist preda-

tors (Chang et al., 1999; McMillan and Morse, 1999; Morse et al.,

1999; Steimle et al., 1999; Lough, 2004) and overlap spatially

and vertically in the water column with Atlantic herring during

portions of the year and day (Jech and Sullivan, 2014).

We fit spatio-temporal models to mass of herring in predator

stomachs obtained during spring and fall bottom trawl surveys to

obtain standardized diet-based biomass indices of Atlantic her-

ring. Additionally, we fit spatio-temporal models to biomass/tow

data of Atlantic herring and predators from trawl surveys to cal-

culate a spatially explicit measure of overlap between predators

and prey, which we employed to evaluate the relationship be-

tween predator–prey overlap and diet-based indices of annual

Atlantic herring abundance.

Data
Biannual bottom trawl surveys have been conducted by the

NEFSC in the western North Atlantic since the 1960s, along with

supplementary surveys conducted to aid in stock assessments in

this ecosystem (Supplementary Appendix Table S1; NEFSC,

2011). Survey data were divided into two seasons, spring (14

January to 31 May, mean 26 March) and fall (28 June to 5

December, mean 7 October). Although sampling occurred during

winter and summer, these tows represented a small proportion of

the data set (e.g. <8% of fall tows were conducted prior to

September), and were grouped with spring and fall, respectively,

to maximize sample sizes. Stomach contents were collected, ana-

lysed, and catalogued in the NEFSC food habits database.

This suite of surveys provides direct information about the abun-

dance and biomass of Atlantic herring captured in trawls in addi-

tion to information about predation on Atlantic herring from

predator stomach contents.

Briefly, stomachs were randomly examined per predator length

bins (1 per 10 cm: Atlantic cod, white hake, and silver hake; or 1

per 20 cm: goosefish and spiny dogfish) as part of a random depth-

stratified survey design for station selection (Azarovitz, 1981;

NEFC, 1988). Prey were examined microscopically and quantified

by mass (0.01 g; prior to 1981) or examined macroscopically and

quantified volumetrically (0.1 cm3; since 1981). A volume to mass

conversion of 1.1:1 was applied based on linear regression (r2 ¼
0.906, p< 0.0001) by Link and Almeida (2000). Additional details

about sampling procedures are documented elsewhere (Link and

Almeida, 2000; Smith and Link, 2010).

The data used to produce diet-based biomass indices were col-

lected from 1973 to 2015, and included mass of Atlantic herring

in predator stomachs (g), predator species, predator length (cm),

and predator size category (small, medium, or large; based on per

cent of maximum body length, L1), location of each tow (lati-

tude and longitude), and season of sampling (spring or fall). For

mass of Atlantic herring in predator stomachs, samples that were

identified as Clupeidae were combined with C. harengus because

Atlantic herring are the predominant clupeid in the study system,

and so samples identified as Clupeidae were also likely Atlantic

herring (Deroba, 2018, p. 201).

For spatio-temporal models fit to predator stomach content

data, we calculated average mass of Atlantic herring consumed for

each predator species per tow. Sampling practices have changed

over time and stomach contents were collected primarily based on

length-stratified sampling (Link and Almeida, 2000). Furthermore,

stomach samples from predators in the same tow may not be inde-

pendent (Millar and Anderson, 2004; Moriarty et al., 2017; Binion-

Rock et al., 2018). We chose to account for these dependencies by

treating the tow-level average as the unit of observation when there

were multiple stomachs per predator species in a tow (68% of tows

contained multiple stomachs per predator species; on average there

were four stomach samples per species per tow). Predator-specific

covariates (e.g. length) were calculated as averages across predators

with multiple stomach samples per tow; observed values were used

if only one predator was present in the tow. In some year–season–

predator combinations, fewer than two observations of Atlantic

herring were recorded in predator stomachs. No diet-based index

was estimated for these year-season combinations to improve

model convergence rates.

The data used to calculate a spatially explicit measure of over-

lap between Atlantic herring and predators were also collected

from 1973 to 2015 and included biomasses of Atlantic herring

and predators (kg), vessel used for the survey, location of each

tow, and biomass per tow of individual species.

Spatio-temporal model structure
We fit two types of spatio-temporal models, the first to predator

stomach content data and the second to trawl survey catches us-

ing the framework developed by Thorson and Barnett (2017),

which allows for simultaneous estimation of unmeasured (latent)

spatial and spatio-temporal variation in dependent variables.

Spatio-temporal models of tow-averaged predator stomach

content data were fit independently for each species-season com-

bination. First, discrete locations (i.e. knots) were defined from

data to approximate the continuous spatial extent of the model,

thereby reducing the computation time (Shelton et al., 2014).

Specifically, 100 knots were distributed using a k-means clustering

algorithm applied to the locations of data. The k-means clustering

algorithm spatially distributes knots with a density proportional

to sampling intensity (Shelton et al., 2014; Thorson et al., 2015).

The definition of knots allowed aggregation of predator stomach

observations from over 6000 unique survey locations to 100 knot

locations that were consistent across years for each predator–sea-

son combination. After knots were defined, their location was

held fixed when the parameters of the spatio-temporal models

were estimated. Knot locations differed between predators and

Predator stomach contents 3
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seasons because not all predator species stomach contents were

sampled in every survey tow.

The spatio-temporal model structure was a Poisson-link delta

model (Thorson, 2018), which estimates the expected mass of

Atlantic herring per predator stomach b ið Þ (in g; where i indexes

each tow in the dataset) as the product of two linear predictors:

the number of Atlantic herring per predator stomach n ið Þ, and

the average mass of Atlantic herring in a predator stomach w ið Þ
(in g per number). There are two primary benefits to modelling

mass as a function of two unobserved, derived quantities (i.e.

unmeasured n and w). First, as shown below, the relationship be-

tween n and w induces correlation between the two components

of the model, which is not present in a traditional delta model,

where probability of encounter is assumed to be independent of

biomass, given an encounter. Second, both predictors use the

same log-link function, which simplifies interpretation of covari-

ate effects. The expected mass of Atlantic herring per predator

stomach b ið Þ can also be expressed as a product of the expected

probability of encounter of Atlantic herring in a predator stom-

ach p ið Þ, and the expected mass of Atlantic herring per predator

stomach given encounter r ið Þ (in g):

E b ið Þ½ � ¼ n ið Þw ið Þ ¼ p ið Þr ið Þ: (1)

The Poisson-link delta model assumes that the spatial distribu-

tion of individuals in the neighbourhood of sampling is random,

such that the probability of encountering at least one Atlantic

herring in a predator stomach follows a Poisson distribution with

intensity equal to the expected number of Atlantic herring per

predator stomach (Thorson, 2018; Grüss and Thorson, 2019):

p ið Þ ¼ 1� exp �nðiÞ½ �: (2)

Then, given the equivalencies shown in Equation (1), it is pos-

sible to calculate the mass of Atlantic herring per predator stom-

ach given encounter as:

r ið Þ ¼ n ið Þ
p ið Þ

w ið Þ (3)

Finally, given the above, the probability of Atlantic herring

mass data is calculated as:

Pr½b ið Þ ¼ B� ¼ 1� p ið Þ; B ¼ 0

p ið Þ � g ½Bjr ið Þ; r2
b�; B > 0

;

�
(4)

where B is the observed mass of Atlantic herring consumed; and

g ½Bjr ið Þ;r2
b� is a Gamma probability density function with mean

equal to r ið Þ and dispersion parameter equal to r2
b.

Both linear predictors, n ið Þ and w ið Þ, are potentially modelled

as functions of temporal variation, spatial variation, and spatio-

temporal variation effects, as well as predator-specific covariates

(e.g. predator size). The fully saturated version of the first linear

predictor is:

log½n ið Þ� ¼ bn tið Þ þ
Xnk

k¼1

kn kð ÞQ i; kð Þ þ xn sið Þ þ en si; tið Þ; (5)

where bn tið Þ is the intercept for year ti ; kn kð ÞQ i; kð Þ is the log-

linear effect of covariate k on the number of Atlantic herring per

predator stomach (see below for more details); si is the location

associated with tow i; ti is the year associated with tow i; and

xn sið Þ and en si ; tið Þ represent, respectively, spatial and spatio-

temporal variation in the number of Atlantic herring per predator

stomach (see below).

To evaluate whether predator characteristics affect annual diet-

based indices of abundance, we included predator traits into the

model as Q i; kð Þ, which is a matrix of nk measured covariates that

explain variation in predation, and knðkÞ is the vector of esti-

mated fixed effects of the predator traits. We considered four po-

tential predator covariate sets for Q i; kð Þ: no covariate effects,

length (continuous), length and length squared, or size category

(as indicator variables; see Data section above). This results in a

log-linear (power-function) effect of each predator trait on prey

biomass in stomachs. Analogous to “catchability covariates”,

standardized predator traits are set to mean values when predict-

ing the diet-based annual biomass index (see diet-based biomass

index below; Thorson, 2019).

The second linear predictor had the same structure as the first

linear predictor and included the same predator covariates:

log½w ið Þ� ¼ bw tið Þ þ
Xnk

k¼1

kw kð ÞQ i; kð Þ þ xw sið Þ þ ew si; tið Þ; (6)

where the parameters on the right side of Equation (6) have the

same meaning and characteristics as the parameters on the right

side of Equation (5), except that they apply to the predicted mass

per Atlantic herring in a predator stomach.

To evaluate fine-scale processes that may affect predator stom-

ach contents, we evaluated spatial and spatio-temporal random

effects. The spatial variation terms in Equations (5) and (6) repre-

sent unmeasured (latent) spatial variation in the linear predictors

that is stable over time, while the spatio-temporal variation terms

represent unmeasured (latent) spatial variation in the linear

predictors that changes between years. Although these effects

could reflect a variety of drivers, such as habitat (e.g. depth),

oceanographic processes (e.g. temperature), or biological pro-

cesses (e.g. prey distribution), we chose to model aggregated la-

tent processes to understand patterns and trends in spatial

effects, rather than to attribute variation to specific sources. These

terms can be modelled as random effects follow a multivariate

normal distribution:

xn � MVN 0;r2
nx

Rn

� �

xw � MVN 0;r2
wx

Rw

� �

en tð Þ � MVN 0;r2
ne

Rn

� �

ew tð Þ � MVN 0;r2
we

Rw

� �
; (7)

where Rn and Rw are the correlations among locations as a func-

tion of decorrelation distance jn and jw , respectively; r2
nx

and

r2
wx

are the estimated pointwise variances of the spatial variation

in the number of Atlantic herring per predator stomach and the
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average mass of Atlantic herring in a predator stomach, respec-

tively; and r2
ne

and r2
we

are the estimated pointwise variances of

the spatio-temporal variation in the number of Atlantic herring

per predator stomach and the average mass of Atlantic herring in

a predator stomach, respectively. The spatial correlation matrices

Rn and Rw are defined by Matérn correlation functions (Thorson,

2019; Table 2, eq. 2.7) that allow for geometric anisotropy (i.e.

correlations are directionally dependent) or geometric isotropy

(i.e. correlations are the same in all directions).

Spatio-temporal models of trawl survey catch data were also fit

independently for each species-season combination to understand

how seasonal and inter-annual variability in predator–prey overlap

might affect a diet-based biomass index. We developed a second

type of spatio-temporal model to estimate indices of overlap be-

tween Atlantic herring and predators for each year. Spatio-

temporal models similar to those described above were fit to bio-

mass catch data for Atlantic herring, Atlantic cod, goosefish, spiny

dogfish, white hake, and silver hake. These additional spatio-

temporal models predicted biomasses in kilogram, instead of mass

of herring in predator stomachs in gram. The same model struc-

ture was used as for diet data, except that predator-trait covariates

were replaced by the identity of vessel used for the survey, because

vessels employed for NEFSC bottom trawl surveys changed over

the study period (Miller et al., 2010; Politis, 2020). Vessel catchabil-

ity covariates were not used in diet-based index models because

predator stomachs were considered the unit of inference and dif-

ferences in catchability were accounted for by the length covariates.

Model fitting and selection
Spatio-temporal models were fit using R package “VAST”

(Vector Autoregressive Spatio-Temporal) version 3.2.2, which is

described in Thorson and Barnett (2017) and Thorson (2019),

and is available at https://github.com/James-Thorson-NOAA/

VAST. All models were fit using a spatial mesh with 50 km grid

resolution. Convergence was verified by examining parameter

gradients and ensuring that none were >10�4. We also verified

that observed herring mass (in predator stomachs) data con-

formed to the given distribution by comparing the empirical dis-

tribution to simulated distributions using a Q–Q plot and density

histogram (Zuur et al., 2009).

We used a three-phase model selection process similar to the

one described in Zuur et al. using restricted maximum likelihood

(REML) to provide unbiased estimates of variance terms and

maximum likelihood (ML) to estimate (2009), which was necessi-

tated by the use of Akaike’s Information Criterion (AIC) for

model selection for a model with both fixed covariate and ran-

dom effects. For all models, we first evaluated whether the inclu-

sion of spatial and spatio-temporal random effects was supported

by fitting models using REML and four spatio-temporal random

effect structures: (i) no spatio-temporal random effects; (ii) spa-

tial random effect in the first predictor only (e.g. for the number

of Atlantic herring per predator stomach); (iii) spatial and tem-

poral random effects in the first predictor only; and (iv) spatio-

temporal random effects in both linear predictors. Additionally,

we evaluated all models with and without anisotropy. We selected

the lowest marginal AIC values (Thorson, 2019; Grüss et al.,

2020b). If models were within two AIC values, we chose the sim-

pler model (i.e. model with fewer random effects, without anisot-

ropy, or both; Burnham and Anderson, 2004). REML was used

during model selection of random effects because this method

provides unbiased estimates of variance terms. Using the random

effect structure selected in the first phase, we then determined

whether the data supported the inclusion of covariates for preda-

tor effects by fitting models using maximum likelihood (ML) and

comparing AIC values. We chose the most parsimonious covari-

ate structure for each predator based on the lowest AIC values, or

the simpler model if DAIC < 2 (Burnham and Anderson,

2004). ML was used during selection of fixed effects because com-

parisons using AIC are not valid for models fit with REML that

have different fixed effects. Once the top model was identified, we

re-fit the models using REML to obtain parameter estimates and

model predictions. We used bilinear interpolation between knots

to obtain model predictions between knot locations (see Grüss

et al., 2020a for details).

The same model selection procedure was used for models of

survey catch data, omitting the covariate selection. The most par-

simonious models as determined by AIC were used to model bio-

mass per tow of each predator and Atlantic herring.

Diet-based biomass index
For each predator–season combination, we estimated an annual

index of abundance by predicting values of the random effects for

each knot location in each year, which encompassed the NEFSC

bottom trawl survey area. Each knot location was associated with

an average surface area of 2740 km2. Predicted values of random

effects were used in the linear predictors, n and w, and covariate

values were set to zero (i.e. the mean value observed for centred

covariates) giving:

b̂ s;t ¼ n̂s;t ŵ s;t ; (8)

where b̂ s;t is the predicted biomass per stomach of Atlantic her-

ring (g/stomach) for each knot location s in year t . Predicted bio-

mass across space was used to calculate a diet-based biomass

index for Atlantic herring:

Î t ¼
Xm

s¼1

asb̂ s;t ; (9)

where Î t is the estimated index value in year t , m is the number of

knots (i.e. 100), and as is the area associated with knot location s.

Estimated spawning stock biomass from stock assessment

models (NEFSC, 2018) was compared to our diet-based annual

indices of Atlantic herring biomass. To allow for this comparison,

both metrics were mean-centred and standardized to have a stan-

dard deviation of 1 across years (Grüss and Thorson 2019; Grüss

et al., 2019).

Predator–prey overlap index
Overlap between each predator and Atlantic herring was calcu-

lated using range overlap, which measures the proportion of

Atlantic herring range where predators co-occur (Carroll et al.,

2019). Range overlap is defined as:

Ôt ¼
Pm

s¼1 û s;t v̂ s;tPm
s¼1 v̂ s;t

; (10)

where Ot 2 ½0; 1� is range overlap in year t ; s is a location; m is

the total number of locations (i.e. 100); û is the estimated
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probability of predator presence at location s in year t (i.e. p̂ s;t ,

Eq. 2); and v̂ is the estimated probability of prey presence at loca-

tion s in year t . The product û s;t v̂ s;t represents the probability

that predator and prey both occur at location s in year t , and

since locations are associated with equal areas, this sum is pro-

portional to the expected area where predator and prey co-occur.

Range overlap therefore provides insight into how much of the

prey population was available to the predator population.

Diet-based biomass indices and predator–prey overlap indices

were compared to estimated Atlantic herring spawning stock bio-

mass from the most recent stock assessment (NEFSC, 2018).

Although we selected spawning stock biomass to use as a bench-

mark, other stock assessment estimates of Atlantic herring bio-

mass show similar temporal patterns (Supplementary Appendix

Figure S1). To evaluate how well each index correlated with

Atlantic herring spawning stock biomass, we created correlation

plots and calculated Pearson’s correlation coefficient to help in-

terpret qualitative comparisons (Aldrich, 1995).

Results
Diet-based biomass index
Predator stomach contents were structured in space and time, as

evidenced by model selection that supported inclusion of spatio-

temporal random effects in the first linear predictor, n the num-

ber of Atlantic herring per predator stomach (Supplementary

Appendix Table S2). Of the 80 models fit to diet data, nine mod-

els had singular Hessian matrices, indicating that some parameter

combinations were not identifiable. Only white hake diets during

spring were found to be described by a non-spatial model.

However, frequency of Atlantic herring in white hake stomachs

was very low in spring (Supplementary Appendix Table S1).

Diagnostic plots of model fits were satisfactory, except for white

hake diets in spring, which indicated lack of fit due to sparse

observations. For all other predators, model selection indicated

support for latent spatial patterns in diet data and that these pat-

terns change among years (Supplementary Appendix Table S3).

Spatial patterns in diet data also differed between predators and

seasons (Figure 2). During fall, diet patterns appeared more similar

among predators, with higher occurrence of Atlantic herring in

diets concentrated near Atlantic herring spawning grounds on

Georges Bank. During spring, spatial patterns in predator diets

tended to be less similar among predators, with a more southerly

distribution overall. For white hake in spring, data sparsity pre-

vented estimation of more than 4 years of diet data.

Predator length was an important predictor for predator stom-

ach contents. Model selection statistics indicated that for most

predators, length and length-squared terms were included in the

top models (Supplementary Appendix Table S4), which generally

created a convex relationship between predator length and

amount of Atlantic herring found in predator stomachs

(Figure 3). For spring goosefish, spring silver hake, and spring

white hake, only predator length was included in top models. As

predator lengths increased, the amount in weight and number of

Atlantic herring tended to increase. These patterns were consis-

tent between seasons.

Although data early in the time series were sparse, diet-based

biomass indices showed evidence that Atlantic herring biomass

was lower from the 1970s until the early 1990s, with higher bio-

mass later in the time series (Figure 4, Supplementary Appendix

Figure S2). These multi-decadal patterns were generally reflected

across predators and consistently between seasons. However, in-

dices were more different on shorter timescales. For example,

Atlantic cod and spiny dogfish in fall exhibited peaks in biomass

around 1995 and 2005. In contrast, goosefish, silver hake, and

spiny dogfish in spring exhibited peaks in Atlantic herring bio-

mass around 2000 and 2010. Additionally, most of the indices in-

cluded individual years with very high, yet imprecisely estimated

index estimates (Supplementary Appendix Figure S3).

Atlantic cod Goosefish Silver hake Spiny dogfish White hake

Fa
ll

Sp
rin

g

Relative mass of Atlantic herring

−1 0 1 2 5 14.39

Figure 2. Annually averaged biomass b̂s;t of Atlantic herring in predator stomachs (g/stomach) after controlling for predator length and
standardizing (mean zero and standard deviation of one) across predator–season combinations. Warmer colours indicate regions where
predators had, on average, higher masses of Atlantic herring per stomach, as predicted by spatio-temporal standardization models. No spatial
estimates were generated for white hake in spring due to sparse data.
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Figure 3. Relationship between predator length (cm) on the log effect of the first linear predictor (n, top row) and second linear predictor
(w, bottom row) of spatio-temporal models of mean Atlantic herring mass in predator stomachs. Shaded regions indicate 95% prediction
intervals. Estimates are plotted for fall (blue lines) and spring (red lines) for each predator. Rug plots (black lines, bottom of each panel)
depict the number of predators observed of each length.

Figure 4. Diet-based annual biomass index estimated with spatio-temporal models from Atlantic herring mass in predator stomachs and
controlling for predator length. Models were fit to predator diet data separately for each season. Estimated mean values are shown 6 one
standard error. Grey line indicates estimated Atlantic herring spawning stock biomass from stock assessment, scaled the mean and standard
deviation of the diet index in each panel.
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Annual diet-based biomass indices did not correlate strongly

with assessment-estimated Atlantic herring spawning stock bio-

mass (Figure 5). Indices based on Atlantic cod diets had the high-

est correlation with Atlantic herring stock assessment estimates,

followed those based on fall goosefish and spring spiny dogfish

diets. Stomach contents from silver hake in both seasons and

spiny dogfish and white hake in fall did not correlate to

assessment-generated Atlantic herring spawning stock biomass,

despite similarities between broad-scale temporal trends. Inter-

annual fluctuations and several years of very high index values

could have reduced this apparent correlation.

Predator–prey overlap index
Predator and prey distributions were strongly structured in space

and time, as evidenced by model selection favouring inclusion of

spatio-temporal random effects for all species and seasons

(Supplementary Appendix Table S5). All models of trawl data

converged, and diagnostic plots indicated satisfactory fits

(Supplementary Appendix Table S6). During fall, areas of high

overlap with Atlantic herring tended to be fairly consistently lo-

cated between predators, concentrated around Atlantic herring

spawning areas near Georges Bank (Figure 6). During spring,

areas of high overlap were distributed further south and varied

more between predators. Annual overlap indices calculated from

these distributions indicated that overlap tended to be highest

during fall, particularly for silver hake and white hake (Figure 7).

Although some predators, such as spiny dogfish and goosefish

had high inter-annual variability in overlap with Atlantic herring,

no consistent directional trends were apparent. Goosefish in both

seasons, silver hake in spring, and to lesser extent white hake in

spring exhibited increases in range overlap from 2008 to 2009,

when there was a survey vessel change. The change in bottom

trawl survey vessel led to a change in catchability, which due to

the design of the survey, confounds the change in catchability

with potential changes in abundance (NEFSC, 2018). Because the

range overlap metric is sensitive to abundance (Carroll et al.,

2019), this appears to have created an erroneous increase in the

overlap index for these species from 2008 to 2009

(Supplementary Appendix Figure S1). In contrast, true changes

in abundance may have driven the consistent decrease in range

overlap between Atlantic cod and Atlantic herring, which de-

clined from nearly 75% in the early 1970s to close to 30% by

2015. Over this period, Atlantic cod biomass decreased, leading

to a decrease in the area occupied, and subsequently lowering

range overlap with Atlantic herring.

Annual diet-based prey indices did not correlate consistently

to predator–prey overlap indices, indicating limits to the extent

that spatio-temporal modelling can standardize diet indices

(Figure 8). For example, spiny dogfish and silver hake had rela-

tively strong, positive correlations between range overlap and diet

indices, while goosefish and white hake had low or negative corre-

lation between overlap and diet indices. Atlantic cod had negative

correlations between overlap and diet indices, perhaps reflecting

the inverse trends in abundance for Atlantic herring and Atlantic

cod. Overall, predators that had the highest range overlap with

Atlantic herring corresponded to diet indices that had stronger

correlations with the assessment index, except for Atlantic cod.

Discussion
Predator stomach contents can be useful for developing

diet-based indices of prey biomass, but they are also affected by

complex interactions between predators, prey, and the environ-

ment. Focusing on Atlantic herring as a case-study species, we

found that dynamic spatial processes were important for govern-

ing predator–prey interactions in the Northwest Atlantic.

Predator species characteristics and body size were also important

drivers of the amount of Atlantic herring found in predator

stomachs. After controlling for spatio-temporal processes and

predator traits, we found that diet-based indices of biomass

Figure 5. Diet-based biomass index estimated using spatio-temporal
models accounting for predator length plotted against Atlantic
herring spawning stock biomass estimated from stock assessment.
Indices are standardized across years (mean zero and standard
deviation one), error bars represent 6 1 C.V. (SE of estimate), and
grey lines indicate a fitted linear regression. Pearson correlation’s
coefficient is shown in upper left corner of each panel.
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shared similar decadal trends but varied substantially among

predators and seasons on shorter time scales. Comparisons be-

tween diet-based indices and stock assessment indices assume

that stock assessments accurately represent trends in Atlantic

herring biomass. Additionally, for some predators, diet indices

may correlate more strongly to other metrics, such as age-1

recruitment, which we did not evaluate. Atlantic cod stomachs

provided a reasonable index in both spring and fall, while

Figure 6. Annually averaged spatially explicit range overlap Ôt between Atlantic herring and five predators as estimated from spatio-
temporal index standardization models fit to bottom trawl survey biomass data for two seasons for all predator–season combinations.
Warmer colours indicate regions were where each predator tended to overlap more with Atlantic herring.

Figure 7. Annual index of predator–prey overlap Ot 2 ½0; 1� between Atlantic herring and predators as estimated from spatio-temporal
models fit to bottom trawl survey biomass data for two seasons (spring, and fall). Predator and prey biomasses were predicted at nearly
continuous locations across the sampling region and the proportion of the prey range encompassed by the predator distribution was
calculated for each season in each year.
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goosefish provided a good index in the fall and spiny dogfish pro-

vided a good index in spring.

Diet-based indices consistently captured decadal patterns in

Atlantic herring biomass, reflecting low biomass through the

1970s, increasing biomass in the mid-1980s, and higher biomass

by the mid-1990s to 2000s (Overholtz and Friedland, 2002).

However, there is still uncertainty about the true Atlantic herring

biomass over time, including more recent declines. For example,

Richardson et al. (2010) developed a larval index for Atlantic

herring that was strongly correlated with stock assessment esti-

mated SSB from 1971 to 2003, but not 2004. As with differences

between our diet-based index and the stock assessment index, it

is unclear whether these types of discrepancies are due to popula-

tion changes that are not captured by the stock assessment model,

or with the formulation of alternative indices. Given uncertainty

in these estimates of Atlantic herring biomass, diet-based indices

adequately captured broad temporal trends, and could provide

additional information about Atlantic herring population bio-

mass. In systems lacking surveys, diet-based indices could be use-

ful by identifying broad trends in biomass. For example, seabird

diet data may be available in systems lacking fishery-based or

scientific-survey data (Einoder, 2009), or may augment shorter

time-series data, as in the use of penguin diets to inform

Antarctic krill biomass (Bost et al., 1994; Brierley et al., 1997).

One limitation of our diet-based biomass indices is that, com-

pared to stock assessment output, they exhibit much higher inter-

annual variation. This “spikiness” can obscure relationships as

measured by correlation coefficients, and may increase overall es-

timation error when used in stock assessments (Bulgakova et al.,

2001; Francis, 2017).

Differences among diet-based indices provide insight about

how to approach estimation of prey biomass from predator stom-

ach contents. Given differences between predators and seasons,

one comprehensive approach to constructing diet-based biomass

indices would be to combine data across predators and seasons in

a unified statistical framework, in the hopes of more robustly

extracting shared temporal patterns. This idea has been explored

previously, for example in population viability analysis, where

multiple surveys are combined to account for changes in survey

methods over time and to extract a shared underlying population

trend (Conn, 2010; Ward et al., 2010; Tolimieri et al., 2017).

Similarly, techniques such as dynamic factor analysis could be

used to combine diet indices estimated separately to identify

shared trends (e.g. Zuur et al., 2003a, b). Where available, jointly

modelling predator biomass and stomach contents (i.e. estimate

“predator expanded stomach contents”; Grüss et al., 2020b) could

provide similar improvement in biomass index estimation by

buffering noisy observations in stomach contents through an esti-

mation of the spatial autocorrelation terms from both diet and

predator biomass data.

More targeted approaches to developing diet indices could al-

ternatively use our findings to focus sampling on one or two

predators or during specific seasons when predator diets are

thought to more closely track prey biomass. Seasonal changes in

predator–prey interactions are known to occur in the Northwest

Atlantic (Garrison, 2000). For example, diet indices from fall

stomach samples tended to better reflect prey biomass, as also

shown in the present study. In the Northwest Atlantic, fall is gen-

erally when Atlantic herring aggregate to spawn (Jech and

Sullivan, 2014), which may result in higher and more consistent

spatial overlap through time, despite changes in predator or prey

abundance. In cases such as spawning, core spatial distributions

may be conserved and, therefore, produce more reliable areas for

predator–prey interactions over time (Sinclair and Iles, 1985;

Rose and Kulka, 1999; Fisher and Frank, 2004), thus producing

more reliable diet data (Richardson et al., 2014). Additionally,

predator ecology may a priori guide our selection of candidate

predators. For example, Atlantic cod are generalist piscivores,

whose diets are known to shift with changing prey assemblages

(Link and Garrison, 2002; Link et al., 2009). Despite changes in

Figure 8. Diet-based biomass index estimated using spatio-temporal
models accounting for predator length plotted against overlap index
estimated using spatio-temporal models. Indices are standardized
across years (mean zero and standard deviation one), error bars
represent 6 1 C.V. (SE of estimate), and grey lines indicate a fitted
linear regression. Pearson correlation coefficient is shown in upper
left corner of each panel.
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Atlantic cod biomass that appeared to reduce range overlap with

Atlantic herring, Atlantic cod diets still correlated strongly to

Atlantic herring abundance, indicating that core areas of overlap

may be preserved, even as abundance declines.

A related implication is that changes in overlap over time, par-

ticularly if those changes are systematic, could affect the utility of

diet-based biomass indices unless those changes can be controlled

for. However, range overlap may not capture overlap dynamics in

way that is relevant to determining utility of a diet index. In par-

ticular, although Atlantic cod had the strongest temporal patterns

in range overlap with Atlantic herring, Atlantic cod diets

appeared to provide useful indices of prey biomass. This contra-

diction demonstrates the challenge of measuring and understand-

ing predator–prey interactions through a single metric, since

decline in Atlantic cod abundance appears to have been the main

driver of declining range overlap.

We observed changes in overlap between predators and

Atlantic herring that could be due to changes in environmental

conditions, predator biomass, timing of surveys, or a combina-

tion of factors (Jech and Stroman, 2012; Selden et al., 2018).

Diet-based biomass indices did not correlate with overlap be-

tween predators and prey, indicating that we successfully

accounted for differences in overlap, despite evidence of system-

atic changes in overlap over time (e.g. for spiny dogfish).

However, overlap may also be important at finer grains than we

were able to measure. The NEFSC bottom trawl surveys are

designed to capture broad, regional patterns (Azarovitz, 1981),

but finer-scale spatial processes could also drive diet patterns.

Additionally, fish distributions are structured by environmental

factors such as temperature (Murawski and Finn, 1988; Fortin

et al., 2015) and currents (Walsh et al., 2015). This is a particu-

larly important area for future research because spatial distribu-

tions of fish populations in the Northwest Atlantic have changed

rapidly and are likely to continue change in the future (Selden

et al., 2018).

Predation by marine fishes is size-mediated (Werner and

Gilliam, 1984; Mittelbach and Persson, 1998). One benefit of our

approach to modelling diets was that we allowed data to inform

what predator sizes were important, rather than arbitrarily bin-

ning or removing data. We found support for maximal selection

of Atlantic herring by intermediate predator lengths, similar to

previous modelling that used splines to relate predator length to

Atlantic herring in diets (Deroba, 2018). Although predator

length was an important driver of stomach contents, we did not

examine the length distribution of predators in space.

Ontogenetic shifts in spatial distribution are common among

fishes and lead to variation in predator length across space

(Scharf et al., 2009; Grüss et al., 2017). Given the relationship be-

tween diets and predator length, accounting for spatial

predator length distribution during index estimation, rather than

evaluating for an average-length predator, could improve accu-

racy of the index.

This study builds on a body of evidence demonstrating the

utility of predator diet data to provide information about prey

species, and in particular, relative biomass (Fahrig et al., 1993;

Link, 2004; Rohan and Buckley, 2017; Scopel et al., 2018).

Although diets reflect complex interactions between predators,

prey, and their environment, spatio-temporal modelling

approaches can help account for these drivers. When used along-

side stock assessment models, diet-based indices can provide ad-

ditional insight into model performance (Gaichas et al., 2010;

Deroba, 2015). In the absence of stock assessments, diet-based

biomass indices can provide useful guidance for managers about

species lacking traditional surveys due to resource limitations or

logistical constraints (Staudinger, 2006).

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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